CONFORMATIONAL PREFERENCE OF [4.4.2]-PROPELLA-3,8-DIENES DERIVED FROM SINGLE-CRYSTAL X-RAY ANALYSIS AND MOLECULAR MECHANICS CALCULATIONS.

George R. Newkome^{*}, Frank R. Fronczek, and Gregory R. Baker Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803

<u>Summary</u>. The crystal structure of [4.4.2]-propella-3,8-diene-11-one (<u>6</u>) and -11,12-dione (<u>7</u>) coupled with molecular mechanics calculations strongly suggest that [4.4.2]-propella-3,8-diene (<u>5</u>) exists predominantly in the <u>E,E</u>-conformation.

In a recent publication, Paddon-Row <u>et al.</u>¹ proposed an alternative model of orbital interactions through bonds. The photoelectron spectra of <u>1-3</u> led these authors to derive "a simple general model of OIT-B." From their model it was concluded that [4.4.2]-propella-3,8-diene should exist in the <u>E,Z-conformation (4)</u> rather than the <u>E,E-conformation (5)</u>, as previously proposed.² We herein demonstrate that the ketone derivative <u>6</u>, the closest structural crystalline relative to <u>5</u>, exists in the crystal state in the <u>E,E-orientation</u> and that molecular mechanics calculations on this propelladiene family (5-7) further support this orientation.

Ketone <u>6</u> (mp 78-80°C) was previously prepared² by the reduction of 12-hydrox₂-[4.4.2]-propella-3,8-dien-11-one. Recrystallization of <u>6</u> from hexane gave crystals suitable for X-ray analysis. <u>Crystal Data</u> for <u>6</u>: Crystals of $C_{12}H_{14}O$ are monoclinic, space group $P2_1/m$, <u>a=6.751(1)</u>,

<u>b</u>=9.238(1), <u>c</u>=7.977(2) Å; β =102.99(2)°, Z=2. Data were collected using MoKæ radiation (λ =0.71073 Å) on an Enraf-Nonius CAD4 diffractometer to θ =30°. The crystal was sealed in a thin-walled glass capillary in order to prevent sublimation during data collection. The structure was solved by direct methods (MULTAN 78)³ and refined by full-matrix least squares to R=0.038 for 717 observed data. Hydrogen atoms were located from difference maps and refined isotropically. The molecule has exact C_S symmetry in the crystal. Figure 1 (top view) and especially Figure 2 confirm that ketone <u>6</u> possesses the E,E-orientation at least in the crystal.

Figure 1. Ketone <u>6</u> (top view). Figure 2. Ketone <u>6</u> (side view). Selected distances and angles⁴ are: C1-O1, 1.199Å; C1-C2, 1.502Å; C1-C4, 1.526Å; C2-C3, 1.561Å; C3-C4, 1.575Å; C3-C8, 1.524Å; C4-C5, 1.533Å; C5-C6, 1.486Å; C6-C7, 1.307Å; C7-C8, 1.495Å; C1-C2-C3, 89.0°; C2-C3-C4, 89.7°; C3-C4-C1, 87.6°; C2-C1-C4, 93.8°. Standard deviations are 0.002Å and 0.1°. The torsion angle C7-C8-C3-C8' is -168.4°.

Molecular mechanics calculations were undertaken to ascertain the energy differences between the <u>E,E-</u>, <u>E,Z-</u>, and <u>Z,Z-</u>conformations of propelladienes <u>5-7</u>. Using the PROPHET⁵ system and crystal structure data for <u>6</u>, Cartesian coordinates were generated for each geometry. The computations were performed using the force field program MM2⁶ for <u>5</u> and <u>6</u>, and due to π -conjugation, MMPI⁷ for <u>7</u>. The steric energies are shown in the Table.

Steric energies for <u>6</u> show that the <u>E,E</u>-orientation is the predominant conformer, in agreement with the derived crystal structure. The calculated bond lengths and angles for <u>E,E-6</u> compare favorably with those derived from the x-ray crystal data. Furthermore, the <u>E,E</u>-conformation is the lowest energy conformer throughout the propella-3,8-diene series (<u>5-7</u>) by ca. 2.75 kcal/mol and 6.25 kcal/mol lower than the <u>E,Z</u>-and <u>Z,Z</u>-conformers, respectively.

Compound	<u>Conformational</u>	Esteric	∆E(kcal/mol)
		(kcal/mol)	
<u>5</u> a	E,E	41.34	
	E,Z	43.90	2.56
	Z,Z	47.07	5.73
<u>6</u> a	E,E	26.07	
	E,Z	28.98	2.91
	Z,Z	32.37	6.30
7 ^b	E,E	31.58	
	E,Z	34.34	2.76
	Ζ,Ζ	38.26	6.68

^aCalculated by MM2 program⁶. ^bCalculated by MMPI program⁷.

Thus, from the crystal data for <u>6</u>, the known molecular structure of $[4\cdot4\cdot2]$ -propella-3,8-diene-11,12-dione⁸, and the computational correlations, the suggestion by Paddon-Row et al.⁷, as based on his simple general model of OIT-B, that <u>5</u> exists in the <u>E,Z</u>-conformation is not likely to be correct.

<u>Acknowledgments</u>. We acknowledge the National Science Foundation for partial support of this research and the PROPHET system, which is funded in part by the Division of Research Resources, National Institute of Health.

References.

- M. N. Paddon-Row, H. K. Patney, R. S. Brown, and K. N. Houk, J. <u>Am. Chem.</u> <u>Soc.</u>, <u>103</u>, 5575 (1981).
- D. Dougherty, J. J. Bloomfield, G. R. Newkome, J. F. Arnett, and S. P. McGlynn, J. Chem. Phys., 80, 2212 (1976).
- P. Main, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Woolfson, MULTAN 78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data, Universities of York (England) and Louvain (Belgium), 1978.
- 4. Crystallographic coordinates have been deposited with the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road Cambridge CB2 1EW.

- W. P. Pindone and T. Kush, ed., <u>PROPHET Molecules</u>: <u>A User's Guide to the</u> <u>Molecule Facilities of the PROPHET System</u>. Bolt, Beranek, and Newman, Inc. Cambridge, MA., April, 1980.
- N. L. Allinger, <u>J. Am. Chem. Soc.</u>, <u>99</u>, 8122 (1977); MM2 obtained from QCPE No. 395.
- 7. J. Kao and N. L. Allinger, J. Am. Chem. Soc., <u>99</u>, 975 (1977); MMPI obtained from QCPE No. 318. The MMPI calculation for <u>7</u> required additional bending and torsional parameters for the α -dicarbonyl portion of the molecule. These parameters were assumed equal to the parameters for alkene type carbons. This seems a good approximation since the four-membered ring does not change appreciably for the conformations <u>E,E-</u>, <u>E,Z</u>- and <u>Z,Z</u>.
- 8. R. Fink, D. V. d. Helm, and S. C. Neely, <u>Acta Cryst.</u>, <u>B31</u>, 1299 (1975).

(Received in USA 22 March 1982)